If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2+69x=0
a = 60; b = 69; c = 0;
Δ = b2-4ac
Δ = 692-4·60·0
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(69)-69}{2*60}=\frac{-138}{120} =-1+3/20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(69)+69}{2*60}=\frac{0}{120} =0 $
| 10+5/2x-1/2x+7=49/3 | | 5n+8=n=6(n=1) | | 1x=5x+45 | | (2x+1)+(6x-5)=180 | | 10=-2t-6 | | x-67=4 | | b+1=-3 | | -12m+5m=7 | | 0.26x=0.676 | | −28x+6=−3(1+7x)−7x | | 14=(x+3) | | 182=125-u | | 10=2t-6 | | 5=1-u | | (x/5)-12=10 | | 3.7+10m=6.45 | | x/3+3=-23 | | 2x+124=120 | | 3a−5=2a+1a= | | 7x-8=26-2x | | 15x-6x+10=100 | | x+10=1+4x | | -5+7=c/7 | | 4.4+10m=7.27 | | 15-1.5x=6.2 | | 8p+-30=-6 | | 8p+12=2p | | -19d+18d+-1=-12 | | 2x+14=3x+-31 | | 4x+1=5x+(−5 | | -2(w+5)=-8 | | 9x-4.5=2(x+3) |